Measurements of Polarization of Heavy Mesons at CDF

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects April 11-15, 2011

Heather Kay Gerberich University of Illinois Urbana-Champaign for the CDF Collaboration

Outline

- Polarization
- Motivation
 - Background of theory and experimental results
- Measurement method
- CDF Run II Results
- Comparison of results
- Summary and Outlook

Polarization (Y(1S) $\rightarrow \mu\mu$):

• Polarization is determined by measuring the angular distribution $\cos^2 \theta^*$: $dN/d(\cos \theta^*) \propto 1 + \alpha \cos^2 \theta^*$

where α is the polarization parameter

Polarization is fully transverse : α =1

Polarization is fully longitudinal: α =-1

and θ^* is defined as the angle between μ^+ direction in Υ rest-frame and Υ direction in lab frame

Diagrams of polarization angles with three different helicity states. When helicity states are equally populated, the vector mesons have zero polarization.

This s-channel helicity frame is used at high p_T collider experiments.

Motivation and Background

- Quarkonium production has not been explained adequately by QCD model
- Naively expect vector-meson production suppressed
 - Color Singlet Model
 - Require 3 hard gluons for colorless state (like OZI suppression)
- CDF Run I found enhanced prompt J/ψ and ψ' production
- $\sigma(\psi')$ is **50x** LO expectation
- Feed-down from χ states should dominate J/ ψ prompt production
 - Two-gluon production
- CDF Run I reported that ~30% of prompt J/ ψ came from χ states

Enter NRQCD Theory

- Non-Relativistic QCD introduces color octet model
- Can largely fit J/ ψ and Y(1S) production spectra

Production spectrum looks good!
How well does NRQCD predict charmonium polarization?

- Predict strong transverse polarization at high momentum $(p_T^2/M^2 >> 1)$
 - Meson carries properties of the hard gluon parent
 Heavy Vector Meson Polarization Measurements at CDF

Charmonium Polarization

 $dN/d(\cos \theta^*) \propto 1 + \alpha \cos^2 \theta^*$

- Inconsistent with NRQCD
 - Question: is the charm quark "heavy"?
 - The bottom quark is!
- Newer NNLO[★] models predict longitudinal Y polarization

NNLO* Can Explain $\Upsilon(1s)$ Production

- Predicting production spectra not a sufficient test of models
 - Need polarization, too.
 - NNLO * model predicts longitudinal Y(1s) polarization at high p_T

Measurement Method

 $dN/d(\cos \theta^*) \propto 1 + \alpha \cos^2 \theta^*$

- Measure $\Upsilon \rightarrow \mu\mu$ yield in bins of p_{τ} and $\cos\theta^*$
- Correct for apparatus acceptance and trigger conditions that affect angular distribution
 - Use MC samples generated with fully transverse (α =1) and fully longitudinal (α =-1) polarizations as templates
 - These templates are weighted to find the proper admixture of polarization that agrees with the data
- Proper treatment of background is crucial
 - Use sideband angular distribution to isolate signal angular distribution
 - Make simultaneous fit to polarization parameter and background in $\cos\theta^*$ bins

$\Upsilon \rightarrow \mu^+ \mu^-$ Mass Distribution

- 2.9 fb⁻¹
- 83,000 Y(1S) candidates
- |y|<0.6
- Resolve 3 peaks

$\Upsilon(1S) \rightarrow \mu^+ \mu^-$ Mass Fits in p_T bins

- Fits in p_T bins
 - Shape used when subdividing into $\cos \theta^*$ bins

Cosθ* Distributions and Template Fits

- High p_T bin is most sensitive to differences between models
 - Suffers from acceptance limits

Results

- Υ (1S) prompt polarization, including feed-down from χ_b , Υ (nS)
- Green band is NRQCD prediction including feeddown (PRD 63, 071502 (2000))

Systematic Uncertainties

- Dominated by
 - Fitting/counting technique
 - Trigger efficiency turn-on
 - Small

$\Upsilon(1S)$ Polarization			
$p_T(\Upsilon)[GeV/c]$	Data Yield	Background	η
2-3	17316 ± 294	11147 ± 172	$0.332 \pm 0.020(stat) \pm 0.003(syst)$
3-4	16819 ± 283	9819 ± 161	$0.317 \pm 0.019(stat) \pm 0.003(syst)$
4-6	22012 ± 312	10636 ± 168	$0.315 \pm 0.019(stat) \pm 0.003(syst)$
6-8	11291 ± 217	4300 ± 107	$0.326 \pm 0.032(stat) \pm 0.003(syst)$
8-12	9846 ± 197	3104 ± 91	$0.351 \pm 0.038(stat) \pm 0.003(syst)$
12-17	3740 ± 117	1035 ± 53	$0.290 \pm 0.058(stat) \pm 0.003(syst)$
17-23	1182 ± 71	372 ± 32	$0.586 \pm 0.126(stat) \pm 0.003(syst)$
23-40	430 ± 47	208 ± 23	$0.685 \pm 0.229(stat) \pm 0.003(syst)$

Note: η is a fitting parameter defined as $\eta = \frac{\sigma_L}{\sigma_T + \sigma_L} = \frac{1 - \alpha}{3 + \alpha}$

$$\eta = \frac{\sigma_L}{\sigma_T + \sigma_L} = \frac{1 - \alpha}{3 + \alpha}$$

Results: CDF Run II and Run I Comparison

- Polarization is small for $p_T < 20 \text{ GeV}$
- Run II data show trend to longitudinal polarization at high p_T

Results: CDF and DØ Comparison

- CDF and DØ results largely inconsistent
 - Use similar techniques
 - Different rapidity regions
 - CDF: |y|<0.6 DØ: |y|<1.8

Summary and Outlook

- Vector meson polarization measurements are vital to understanding NRQCD and other production models
- CDF has measured the $\Upsilon(1S)$ polarization using 2.9/fb of data
 - Measurement showed trend toward longitudinal polarization with increasing p_T
 - CDF Run I and Run II results are consistent
 - CDF and D0 Run II results show different trends
- Experimental and theoretical puzzles still need to be understood
- Extending analyses at CDF
 - Include $\Upsilon(2S)$ and $\Upsilon(3S)$
 - Increase data sample